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Abstract  

Cycling is encouraged in countries around the world as an economical, energy-efficient, and 

sustainable mode of transportation. Simulation is an important approach to analyzing the safety 

of cycling by identifying the effects of different factors. To ensure the success of a simulation 

study, it is essential to know the factors that have significant effects on bicycle safety. Although 

many studies have focused on analyzing bicycle safety, they lack bicycle exposure data, which 

could introduce biases for the identified factors. This study represents a major step forward in 

estimating safety performance functions for bicycle crashes at intersections by using 

crowdsourced data from STRAVA. Several adjustments considering the population distribution 

and field observations were made to overcome the disproportionate representation of the 

STRAVA data. The adjusted STRAVA data that includes bicycle exposure information was used as 

input to develop safety performance functions. The functions are negative binomial models 

aimed at predicting frequencies of bicycle crashes at intersections.  

The developed model was compared with three counterparts: a model using the un-adjusted 

STRAVA data, a model using the STRAVA data with field observation data adjustments only, and 

a model using the STRAVA data with adjusted population. The results revealed that the STRAVA 

data with both population and field observation data adjustments had the best performance in 

bicycle crash modeling.  

The results also addressed several key factors (e.g., signal control system, intersection size, bike 

lanes) that are associated with bicycle safety at intersections. It is recommended that the effects 

of these identified factors be explored in simulation studies. Additionally, the safety-in-numbers 

effect was acknowledged when bicycle crash rates decreased as bicycle activities increased. The 

study concluded that crowdsourced data is a reliable source for exploring bicycle safety after 

appropriate adjustments. 



 

 

 

1 Introduction 

1.1 Bicycle Safety  

The transportation-related challenges of traffic congestion and road-safety concerns are the 

main problems facing transportation agencies worldwide. Recently, sustainable modes of 

transportation have been encouraged by governmental agencies in order to increase green 

cities and counteract global climate changes. Countries around the world are increasingly 

turning to promoting bicycling as an economical and energy-efficient form of transportation. 

Bicycling could have many potential benefits, such as reducing air pollution, congestion, and fuel 

consumption, in addition to promoting public health and decreasing stress levels [1-3]. Recently, 

bicycle usage in the U.S. has increased markedly and is considered one of the main active 

transportation systems that promote the effective use of road space and parking, in addition to 

offering energy-efficiency benefits. Nevertheless, cyclist safety is recognized as a serious 

problem in the U.S.; between 2004 and 2013, bicyclist fatalities increased from 1.7% to 2.3% [4]. 

This risk is one of the main things that discourage people from choosing cycling as a major travel 

mode. Hence, improving the bicycle infrastructure and evaluating bicycle safety have become 

increasingly crucial. 

Previous studies have found that intersections are one of the hotspots for the occurrence of 

bicycle crashes [5-11]. Nordback et al. [12] developed bicyclist-safety performance functions at 

the intersections of Boulder, Colorado. The authors discovered a non-linear relationship 

between bicycle trip frequencies and bicycle-motorist crashes. Similarly, there was also a non-

linear relationship between vehicle volume and bicycle-motorist crashes. The results also 

showed that bicycle crash rates decreased at intersections with more bicycle volume (the 

concept of safety in numbers) [12]. Abdel-Aty et al. [7] carried out a study to explore the 

contributing factors affecting bicycle crash frequencies. The authors developed four negative 

binomial (NB) models. The results reported that bicycle safety is associated with the presence of 

intersections and areas where the speed limit is 35 mph [7]. Siddiqui et al. [8] developed 

Bayesian Poisson-lognormal models accounting for spatial correlation of bicycle crashes. The 

results showed that several factors significantly increase bicycle crashes, including intersections, 

population density, and urban areas [8]. Cai et al. [5] found that several factors have a significant 

impact on bicycle crashes using a zero-inflated negative binomial spatial model. These factors 

include signalized intersections, population density, employment count, vehicle miles traveled 

(VMT), sidewalk length, local roads’ length, and number of pedestrians and cyclists [5].  

In bicycle safety analysis studies, exposure could be bicycle volume [13], traffic volume [14], 

bicycle trip distance [15], bicycle trip time [16], population [17], or risk of injury [18]. Vanparis et 

al. [19] concluded that bicycle exposure should be included in bicycle safety analysis. On the 

contrary, they reported that there is a lack of good bicycle exposure measures. Strauss et al. [20] 

performed a study for analyzing bicycle injury crashes at 647 intersections using the Bayesian 

modeling approach. The bicycle flow from the Montreal Department of Transportation was used 

as the exposure. The study found that there is a significant association between bicycle volume 

and injury crash count occurring at intersections. Specifically, injury crashes increased by 0.87% 



 

 

10 
An Assessment of Traffic Safety between Drivers and Bicyclists Based on Roadway Cross-
Section Designs and Countermeasures Using Simulation 

for every increase of 1% of bicycle volume. Another study by Strauss et al. [21] used 

smartphones’ GPS tracers in order to collect bicycle trip data at intersections. The results of the 

study uncovered that a bicycle facility (e.g., cycle track, bicycle path) had a significant effect in 

increasing bicycle count at signalized intersections. In addition, cycle tracks have a positive 

impact on reducing cyclist risk. The study emphasized the importance of using GPS in collecting 

data since it generates a large amount of spatial bicycle data.   

1.2 Crowdsourced data 

To date, there are limited sources of bicycle data for estimating bicycle traffic volumes. Recent 

studies utilized some data sources for analyzing bicycle trips and safety. Generally, bicycle 

volumes can be collected from crowdsourced GPS tracers [22-24], automated counters, 

observed data for links or intersections, or travel surveys [25]. Due to the high cost and 

limitations of the observed data, crowdsourced GPS tracers are the preferred data source due to 

their low cost and the availability of cyclist characteristics compared to other available sources. 

Crowdsourced GPS applications, such as STRAVA and MapMyRide, are considered Big Data 

sources. Researchers refer to these applications as Big Apps [22].  

Jestico et al. [23] conducted a study to predict cyclist volumes using STRAVA crowdsourced data 

by tracking routes using GPS. Categorical breakdowns were used for predicting the cyclist 

volumes. Generalized linear models with Poisson distribution were conducted, and the results 

showed that the spring and summer months had the highest cycling volume when compared to 

other time periods. The presence of bike facilities (i.e., painted bike lanes and paved multi-use 

trails) did not appear to affect the cycling volume prediction. The findings of the study revealed 

that crowdsourced data from STRAVA had a linear correlation with field count data. However, 

STRAVA users represent a sample of the overall actual number of cyclists. The authors also 

concluded that STRAVA data is a good indicator of the actual bicycle volume [23].  

Another study was conducted by Hochmair et al. [24] to identify the factors that affect the 

cyclist volume from STRAVA data. Linear regression models were developed for predicting the 

bicycle kilometers traveled (BKT). The results of the study revealed that bicycle volume was 

found to have a positive correlation with the presence of recreational trails for cyclists and 

pedestrians. Additionally, BKT increased at roads that have low-speed traffic, such as locals and 

collectors, when compared to other types of roads. The results confirmed that use of STRAVA 

data can be considered an appropriate approach for estimating cyclist volume. However, it was 

skewed towards young, male cyclists [24]. A study conducted by Sun et al. [26] utilized STRAVA 

data for evaluating air pollution exposure. The study utilized the crowdsourced data to 

investigate the relationship between active travel and active pollution concentration as a further 

step for potential policy-making [26]. Heesch et al. [27] used STRAVA data for evaluating the 

impact of bicycle infrastructure on cycling behavior. In general, few studies used STRAVA 

crowdsourced data as a source of bicycle data, whereas there was no study conducted to 

overcome the disproportionate representation of the data [27]. 

1.3 Geometric Design and Built-In Environment Characteristic 

Different geometric design characteristics were used in this study, including bike lane, bike lane 

width, sidewalk, sidewalk width, median, median width, and raised median.  From previous 

studies, these seemed to be the characteristics best suited to helping improve bicycle safety at 
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intersections. According to Sadek et al. [28], based on survey data, the installation of an 

advanced bike lane helps increase awareness of drivers and bicyclists. The responses showed 

that 75.4% of drivers believed that the new bike lane made drivers more aware of the presence 

of bicyclists. The survey also showed that 76% of bicyclists said that the new bike lane had made 

them more vigilant. The results showed that adding a bike lane on urban arterials has positive 

safety effects (i.e., CMF < 1) for all crashes and for bike crashes [29]. It was found that adding a 

bike lane is more effective in reducing bike crashes than all crashes. 

The presence of a raised median, on the other hand, is expected to reduce crashes. According to 

Strauss et al. [20], the presence of a raised median at an intersection reduces injury occurrence 

by over 42%. Raised medians are found along at least one approach in many of the intersections 

in this study. Medians place constraints on motor-vehicle movements and can provide a refuge 

for cyclists who may have run out of time to safely cross the intersection. It is also important to 

mention that the presence of bicycle lanes at intersections was also tested. Only a small number 

of intersections in this study have bicycle facilities in the intersection. This may explain why they 

were not found to be significant. Therefore, there is not enough evidence to establish a positive 

(or negative) association between bicycle facility presence and injury frequency at signalized 

intersections. The presence of bicycle facilities at intersections was not found to be statistically 

associated with injury frequency, but it has been found to increase cyclist volumes [20]. Not 

surprisingly, intersections with bicycle facilities have a significantly higher concentration of 

cyclists. This means that, after controlling for other factors, intersections with bicycle facilities, 

with higher cyclist volumes, are expected to witness greater injury frequency but lower injury 

rates. 

To clarify the relationship between cycling and the built environment, methodological 

refinements tailored to cycling are needed. Factors such as the local availability of sidewalks or 

land use mix may be primary motivators of walking trips, but decisions on whether to cycle may 

be influenced by a different suite of factors across spatial areas beyond the trip origin [30]. 

According to Winters et al. [30], in a survey querying 73 factors, the top four motivators for 

making a trip by bicycle were related to routes: being away from traffic and noise pollution, 

having beautiful scenery, having separated bicycle paths for the entire distance, and having flat 

topography.  The geographic accessibility of destinations (i.e., schools, employment sites, retail) 

may also affect the likelihood of making trips by bicycle, and since two-thirds of cycling trips are 

under 5 km and 90% are less than 10 km, short trip distances are important. 

According to Strauss et al. [20], intersections with three approaches are expected to have fewer 

cyclists than intersections with four approaches (with an elasticity of 0.77). This factor can be 

seen as a proxy for intersection connectivity. Strauss et al. [20] also noted that, not surprisingly, 

the presence of bicycle facilities near an intersection has an important effect on bicycle activity. 

Intersections near bicycle facilities have a much higher concentration of bicycle flows with an 

elasticity of 0.288 and C.I. [0.131, 0.146]. 

Using a novel methodology tailored to cycling, Winters et al. [30] found that the built 

environment influenced decisions to bicycle instead of drive after accounting for trip distance 

and personal demographics. This study characterized the built environment around the trip 

origin and destination and along the route between the two, and found increased bicycling with 

less hilliness; fewer arterial roads and highways; higher intersection density; presence of bicycle-
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specific infrastructure including traffic calming, signage, road markings, and cyclit-activated 

traffic lights; more neighborhood commercial, educational, and industrial land use; less large 

commercial and single-family housing land use; greater land use mix; and higher population 

density. 

Changes in the built environment are expected to cause direct changes in bicycle volumes and 

therefore indirect changes in injury frequency and injury risk at intersections. For instance, after 

the installation of a new bicycle facility crossing an intersection, bicycle flows are expected to 

grow, as will the number of injuries without appropriate countermeasures [20]. 

1.4 Bicycle Safety Countermeasure 

Countermeasures that can be used to help reduce bicycle-motor vehicle (BMV) crashes would 

be bike lanes (preferably bike lanes in between through and turn lanes), sidewalks, and medians 

(preferably raised medians). Other typical countermeasures include the reduction of turning 

radii, the implementation of an exclusive bicycle and pedestrian signal phase, bike boxes, etc. 

According to Strauss et al. [20], restricting turning vehicular movements is a common practice in 

cities like Montreal; however, it may simply move the problem to neighboring intersections and 

can have negative impacts on network connectivity, travel times, and delays. This 

countermeasure may, however, be justifiable at intersections with very high cyclist flows.   

When it comes to bicycle safety for roadway segments, the best countermeasures to use are 

bike lanes, bike paths, medians, and raised medians.  These countermeasures will help decrease 

the risk of BMV crashes in the roadway segments. 

When it comes to studies on bicycle safety in the US, there are not that many. Cyclist safety 

studies at intersections are rare in North America; most have been carried out in European and 

Asian cities [12]. While a few studies have been carried out in the United States and Canada, 

these have mainly focused on cyclist injuries at the bicycle facility, city, or town level and did not 

focus on intersections (junctions) as the unit of study [31]. Oh et al. [32] revealed that bicycle 

crashes at urban intersections in Inchon, Korea, increase with increasing average daily traffic 

volume, with number of driveways, and in the presence of crosswalks and industrial land use. 

Crashes were found to decrease with increasing sidewalk widths and in the presence of bus 

stops and traffic-calming measures. For non-signalized intersections, some countermeasures can 

be adopted for safety.  Stop signs, which are typical for most intersections in North American 

neighborhoods, can be removed in the direction of the bicycle travel along these routes to 

facilitate continuous travel without dismounting at every intersection [33]. These are just some 

of the countermeasures that could be adopted when it comes to bicycle safety. It is expected 

that, in the future with the use of current and future research, other countermeasures could be 

developed to help increase bicycle safety. 

1.5 Study Objectives 

As discussed above, previous studies have shown that bicyclists are more likely to be involved 

crashes at intersections [5-11]. A lot of factors have been revealed in the previous studies. It was 

also concluded that there is a lack of good exposure for bicycle crash modeling, which may 

introduce biases for the effects of identified factors. Moreover, smartphone GPS data (i.e., 

STRAVA data) has been utilized in limited studies as a reliable source of bicycle exposure for 
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bicycle safety analysis [21, 34, 35]. STRAVA can generate a significant amount of bicycle data 

tracked by GPS. However, the data needs some adjustments since it is skewed towards young 

male cyclists and represents a sample of the actual bicycle data [23, 24, 34, 35]. 

This work draws on the strengths of the crowdsourced data for analyzing bicycle safety. 

Negative binomial models are used for developing safety performance functions (SPFs) for 

bicycle crashes occurring at intersections. Several adjustments were applied to the STRAVA data 

to overcome the disproportionate representation and the spatial biases of the crowdsourced 

data. The optimal STRAVA data adjustment was determined based on the model performance. 

This paper is composed of five sections. Following this section, the second section provides a 

review of the data preparation. Section 3 describes the STRAVA data manipulation, which 

mainly included population representation and field adjustments. The fourth section provides 

the results of the bicycle safety performance functions. The last section summarizes the 

conclusions and discusses the implication of the findings for future research. 
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2 Data Preparation 

Now that the bicycle-safety-related studies have been presented in the literature review, we will 

discuss the specific data to be used in the study. Data from the intersections of Orange County, 

Florida, were used for the analysis. Orange County was selected due to the relatively high rate of 

bicycle commuting in Florida, as well as high rates of bicycle crashes. Intersections are the focus 

since the majority of bicycle crashes are found to occur there. Various types of datasets were 

used for analyzing bicycle safety at intersections. These datasets are as follows: bicycle crash 

data, bicycle volume from STRAVA data, and road geometry data. 

2.1 Bicycle Crash Data 

Bicycle crashes were collected from Florida Signal Four Analytics (S4A) over the course of four 

years (2013-2016). Three different crash severities were defined in the dataset: fatality, injury, 

and property damage only (PDO). Crashes involving bicycles represented 0.79% and 4.5% of 

total crashes and fatal crashes, respectively. Figure 2.1 shows the crash frequency for each 

severity level. Total bicycle crashes were reduced by 10.6% from 2013 to 2016. Injury and PDO 

crashes followed the same trend, whereas fatality bicycle crashes fluctuated over the years. In 

Florida, between 2013 and 2016, 55% of all bicycle crashes and 38% of fatality crashes were at 

intersections, possibly because bicycles have more interaction with vehicles at intersections.  
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                                      (c)                                                         (d) 

Figure 2.1 - Bicycle crashes in Florida 

 

In Orange County, 976 bicycle crashes were observed near intersections from 2013 to 2016. 

Orange County has the third-highest rate of bicycle crashes among all counties in Florida (9%) 

after Miami-Dade County (9.5%) and Broward County (11%), as shown in Figure 2.2. 

Additionally, the highest number of fatal bicycle crashes occurred in the intersections of Orange 

County, contributing 10.7% overall. The majority of bicycle crashes in Orange County occurred at 

intersections, with 54% compared to other sections. Figure 2.3 shows the bicycle crash 

distribution in Orange County. For the three-legged intersections, the percentages of the three 

severity levels were as follows: 13% PDO, 85% injury crashes, and 2% fatal crashes. For the four-

legged intersections, the percentages of the three severity levels were as follows: 16% PDO, 82% 

injury crashes, and 2% fatal crashes.  
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Figure 2.2 - Bicycle crash distribution in Florida 

 

 

Figure 2.3 - Bicycle crash distribution in Orange County, Florida 

 

Upon closer inspection of the crash frequency at the intersections of Orange County between 

2013 and 2016, it can be noted that bicycle crashes occurred during the peak hours of 3:00 pm 

to 6:00 pm, as shown in Figure 2.4.  Hence, more attention should be paid to the peak 
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conditions. Winter and fall have higher rates of bicycle crashes than the summer and spring 

seasons. Bicycle crashes tend to increase by 10% in the winter when compared to summer. In 

addition, it was found that female drivers were less likely to be involved in bicycle crashes. 

Bicycle crashes occurred most frequently for cyclists aged between 25 and 35, as shown in 

Figure 2.5.  

 

 

Figure 2.4 - Bicycle crash time 
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Figure 2.5 - Bicycle crash frequency for various age groups 

 

2.2 STRAVA Data 

Crowdsourced data provides the opportunity to study bicycle data in a prospective, efficient, 

and rigorous way. The data was collected using either GPS transponders or smart-phone 

applications that use GPS for recording bicycle trips on tracked routes. Specifically, in this study, 

STRAVA data was used since it provides a database for tracking millions of bicycle trips [36]. 

STRAVA data was obtained over the course of four years (2013-2016) from the Florida 

Department of Transportation (FDOT) Unified Basemap Repository (UBR). STRAVA is a 

smartphone application that tracks runners and cyclists’ activities via GPS. Over 90 million users 

and more than 2.5 million activities tracked by GPS are uploaded every week to STRAVA [22]. 

This rich amount of temporal and spatial data could be used for analyzing bicycle safety at 

intersections. However, suspicions have been raised by some studies about the applicability of 

STRAVA data for representing the actual proportion of cycling activities in the overall population 

[23, 24, 37]. Hence, adjustments were applied in this study to overcome the skewness and the 

biases of the data due to the disproportionate representation of bicycle trips.  

Bicycle data was obtained over the course of four years (2013-2016) from the STRAVA Metro 

database. Figure 2.6 shows STRAVA bicycle trips in Florida’s counties. The highest number of 

STRAVA bicycle trips occurred in Miami-Dade, Broward, Orange, and Pinellas Counties. In 

addition, bicycle miles traveled (BMT) was computed for each county as the bicycle volume 

divided by the number of miles traveled. Figure 2.7 shows the spatial distribution of BMT. It can 

be noted from the figure that Miami-Dade, Broward, Orange, and Pinellas Counties have the 

highest BMT in Florida. Additionally, bicycle crash rate was calculated as the number of bicycle 

crashes divided by BMT. It was found that Orange and Pinellas Counties have the highest bicycle 

crash rate in Florida, as shown in Figure 2.8. Figure 2.9 shows STRAVA bicycle trips in Orange 

County. 
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Figure 2.6 - Bicycle trip distribution from STRAVA Metro data 

 

 

 

Figure 2.7 - Bicycle miles traveled from STRAVA Metro data 
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Figure 2.8 - Bicycle crash rate in Florida 

 

Figure 2.9 - Spatial distribution of bicycle STRAVA data in Orange County 

2.3 Road Characteristics Data 

Road geometric characteristics data was collected from the Roadway Characteristics Inventory 

(RCI) database of the FDOT. Table 2.1 shows a detailed description of the road characteristics 

used in the modeling. Intersection size is the perimeter of the intersection calculated from the 

number of lanes and the lane width of each leg. According to the FDOT, pavement condition 

value ranges between 0 and 5. Values between 0 and 2 imply a poor pavement condition, while 

values between 4 and 5 represent a higher-quality condition, indicating newer pavement 

condition. In addition, values between 3 and 4 reveal a good pavement condition, while a fair 
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pavement condition occurred when the values ranged between 2 and 3. The table presents the 

mean and standard deviation (SD) of the continuous variables such as shoulder width, median 

width, sidewalk width, intersection size, speed limit, and pavement condition. It is worth 

mentioning that, for continuous variables, the average value of the major and minor roads was 

used in the analysis.  

Furthermore, total entry volume (TEV) and total entry bicycle (TEB) were included in the 

analysis. TEV is the aggregated traffic volume of the major and minor roads in the four-legged 

intersections, while in the three-legged intersections, it is calculated as the aggregation traffic 

volume in the major road and half of the traffic volume in the minor road. Total entry bicycle is 

the aggregated STRAVA bicycle trips of the major and minor roads. 

 

Table 2.1 - Road characteristics at Orange County intersections 

Categorical Variables  Attributes 
Percentage 

Major road Minor road 

Signal Control System 
Traffic Signal 74% 

Stop sign 26% 

Intersection Legs 
Four-leg 68% 

Three-leg 32% 

Bike Lanes  
Yes 26% 20% 

No 74% 80% 

Shoulder Type 

Paved 32% 29% 

Not paved 3% 5% 

No shoulder 65% 66% 

Median Type 

Painted 34% 46% 

Concrete 11% 19% 

Turf 7% 21% 

Curb 48% 14% 

Pavement Condition 

Poor 7% 9% 

Fair 10% 18% 

Good 46% 45% 

Very good 37% 28% 

Road Surface Type 
Asphalt 94% 98% 

Concrete 6% 2% 
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Road System 

Principal arterial 34% 4% 

Minor arterial 32% 14% 

Collector 33% 79% 

Local 1% 3% 

Sidewalk Barrier 

No barrier 71% 94% 

With barrier (guardrail, parking 
lane, row of trees) 

29% 6% 

Continuous Variables   
Mean (S.D.) 

Major road Minor road 

Intersection Size (feet)  98.64 (23.42) 

Median Width (feet)  18.05 (17.74) 11.99 (9.61) 

Sidewalk Width (feet)  6.07 (3.75) 4.68 (1.17) 

Shoulder Width (feet)  2.52 (3.066) 2.11 (0.75) 

Speed Limit (mph)  39.03 (7.76) 33.54 (7.44) 

 

2.4 Data Adjustment 

One of the problems encountered in the STRAVA data is the disproportionate representation of 

bicycle trips among the overall population. Previous studies found that STRAVA data is skewed 

towards young, male cyclists [24]. Additionally, STRAVA represents only a small portion of the 

overall cyclists in the real world. Jestico et al. [23] found that one cyclist from the crowdsourced 

data represents 51 bicycle riders in the field. Hence, in our study, two types of adjustments were 

determined as needed: population representation adjustment and field observation data 

adjustment.  

2.4.1 Population Representation Adjustment 

The major benefit of the data manipulation process is to create adjustment factors to be applied 

to the STRAVA data in order to appropriately represent the actual bicycle data at intersections. 

In the population representative adjustment process, factors were generated and applied to the 

data to adjust the percentages of cyclists for various age and gender groups. The adjustment 

factors were calculated based on the following formula:  

𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 =  (1 −  (𝑆𝑇𝑅𝐴𝑉𝐴 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛))   (2.1)       

               

STRAVA cyclist proportions for the different age and gender groups are shown in Table 2.2. The 

actual cyclist proportions were calculated for each census tract based on the bicycle data of the 

National Household Travel Survey (NHTS). Subsequently, the adjustment factor for each census 
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tract was generated and applied to the studied intersections in order to adjust the STRAVA data 

proportions.   

 

Table 2.2 - Breakdowns of STRAVA users’ age and gender in Florida 

Age Male Female 

Under 25 8.14% 12.40% 

25-34 23.08% 27.39% 

35-44 28.79% 25.20% 

45-54 24.87% 22.55% 

55-64 11.71% 10.38% 

65+ 3.40% 2.08% 

 

2.4.2 Field Data Adjustment 

STRAVA bicycle data was manipulated for representing the field observation data by generating 

adjusted TEB for the intersections of Orange County using actual observed data. A total of 171 

intersections with field-observed data were randomly selected for computing the adjusted TEB 

for the intersections of Orange County. The observed bicycle data at the intersections of Orange 

County was provided by FDOT, District 5 traffic operations. Figure 2.10 shows the intersections 

with observed volumes. The observed data includes daily bicycle frequency for each 

intersection. In addition, STRAVA data was calculated for each intersection from the average 

number of the annual bicycle trips value for each year from 2013 to 2016 and converted to a 

daily value to match the observed data. A Spearman correlation coefficient of 0.72 and a P-

value<0.0001 at a 95% confidence indicates a significant association between the field observed 

bicycle data and the STRAVA crowdsourced data. A linear regression model was utilized to 

determine the adjustment factor for the 481 intersections (Figure 2.11) in Orange County. 
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Figure 2.10 - Intersections with observed volumes in Orange County 

 

 

Figure 2.11 - Studied intersections in Orange County  

(Note: yellow intersections represent the observed data) 
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The model was adopted for generating a formula to be applied to the intersections of Orange 

County that have no observed data. The outcome is the natural logarithm of the bicycle volume 

observed in the field. The results (Table 2.3) showed that several variables, including TEV (in 

1000 vehicles), TEB, the ratio between TEV and TEB, and intersection size, could significantly 

affect the adjusted TEB. 

 

Table 2.3 - Linear regression results for the adjusted TEB 

Parameters 
Parameter 

Estimate 

Standard 

Error 
t-value p-value 

Intercept 4.0363 0.1671 24.15 <.0001 

TEV 0.0098 0.0015 6.36 <.0001 

TEB 0.0143 0.0035 4.00 <.0001 

Ratio -0.0056 0.0002 -21.76 <.0001 

Intersection Size 0.0021 0.0009 2.03 0.0441 

Model Fit 

Adjusted R-Square 0.801 

F-value (p-value) 164.42 (<0.0001) 

 

The coefficient of determination (R-squared value= 0.801) indicates that the estimated 

model can be employed for accurately determining the adjusted TEB. Based on the 

results of the linear regression model, the formulation for computing the adjusted TEB at 

intersections is as follows: 

 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑇𝐸𝐵 = exp (4.0363 + 0.0098 × 𝑇𝐸𝑉 + 0.0143 × 𝑇𝐸𝐵 − 0.0056 × 𝑅𝑎𝑡𝑖𝑜 +

0.0021 × 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑆𝑖𝑧𝑒)                            (1.2) 
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3 Methodology 

Negative binomial models were used to develop the SPFs of bicycle crashes at intersections. 

Safety performance functions have been a prominent tool for predicting crash frequencies and 

identifying the factors that affect crashes. Previous studies utilized the NB framework as a 

flexible approach for developing SPFs [38, 39]. 

Safety performance functions attempt to quantify the effect of contributing factors on bicycle 

crash frequencies at intersections. The bicycle crash frequency was considered as the 

dependent variable. Multiple road characteristics variables (i.e., pavement condition, bike lanes, 

etc.) served as the independent variables. Two exposure measurements, TEV and TEB, were 

considered as crash predictors in the model development. SAS 9.4 was used for developing the 

NB models. The model formulation takes the following form: 

 

Y ~ NB (𝜆𝑖)                                                                                        (3.1) 

 

𝜆𝑖 = exp( 𝛽0 + 𝛽1 𝐿𝑛 (𝑇𝐸𝑉)𝑖 +  𝛽2 𝐿𝑛 (𝑇𝐸𝐵)𝑖 +  𝛽𝑧 𝑋𝑖 +  𝜀𝑖)                                (3.2) 

 

where 𝜆𝑖  is the response variable (expected crash frequency) at intersection i; β0 is the 

intercept; β1, β2, β3, and βz represent the coefficient of independent parameters; 𝜀  is the 

gamma-distributed error term with a mean equal to 1 and variance α (i.e., over-dispersion 

parameter); 𝑋𝑖 represents the road geometry characteristics; and 𝛽𝑧 represents corresponding 

coefficients to be estimated. 
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4 Modeling Results 

The NB models were used for identifying the optimal case for STRAVA data adjustment. The first 

model included the STRAVA data without adjustments. The second model was developed for 

STRAVA data with a population representation adjustment. The third model that was estimated 

included the STRAVA data with field data adjustment. The fourth model utilized both population 

representation and field observation data adjustments. Table 4.1 shows the results of the 

models and the comparison of STRAVA bicycle data cases. Five goodness-of-fit measures were 

used: the Akaike information criterion (AIC), Bayesian information criterion (BIC), root mean 

squared errors (RMSE), mean absolute deviation (MAD), and percent mean absolute deviation 

(PMAD). The AIC and BIC estimate the quality of the model. Better models have smaller AIC and 

BIC values. The RMSE is the sum of the squared error divided by the number of observations, 

and MAD is the sum of the absolute deviations over the number of observations. Lastly, PMAD is 

calculated based on the sum of absolute deviations over the sum of absolute observed values. 

The equations of the goodness-of-fit measures are shown as follows: 

 

𝐴𝐼𝐶 = 2 × 𝑘 − 2 × ln (�̂�)            (4.1) 

 

𝐵𝐼𝐶 = ln (𝑁) × 𝑘 − 2 × ln (�̂�)            (4.2) 

 

𝑅𝑀𝑆𝐸 = √∑ (𝑦[𝑖] − �̂�[𝑖])2/𝑁𝑁
𝑖−1            (4.3) 

 

𝑀𝐴𝐷 = ∑  |𝑦[𝑖] − �̂�[𝑖]|/𝑁𝑁
𝑖−1                  (4.4) 

 

𝑃𝑀𝐴𝐷 =  ∑  |𝑦[𝑖] − �̂�[𝑖]| 𝑁
𝑖−1 ∑  |𝑦[𝑖]| 𝑁

𝑖−1⁄              (4.5)   

 

where 𝑘 is the number of estimated parameters in the model; �̂� is the maximum value of 

the likelihood function for the model; 𝑦[𝑖] is the observed value of 𝑖; �̂�[𝑖] is the predicted 

value of i; and 𝑁 is the number of observations.  

The results of the goodness of fit indicated that STRAVA data with adjustment could consistently 

provide better performance than data without any adjustment. Applying both field and 

population representation adjustments showed the best performance, which minimized the 

values of AIC and BIC. Also, the lowest values of MAD, RMSE, and PMAD in the case of STRAVA 

data with both adjustments imply better performance than the other cases. Therefore, it is 

concluded that STRAVA data should be adjusted for proper representation of real-life bicycle 

volume. 



 

 

 

Table 4.1 - SPF results for all studied cases 

    
STRAVA without 

Adjustment 

STRAVA with Population 

Adjustment 

STRAVA with Field 

Adjustment 

STRAVA with Both 

Adjustments 

Parameters Attributes Est. S.E. Est. S.E. Est. S.E. Est. S.E. 

Intercept 
 

-11.457* 1.185 -11.392* 1.170 -16.041* 1.615 -16.867* 1.500 

Log TEV 
 

0.766* 0.124 0.730* 0.123 0.498* 0.132 0.434* 0.128 

Log TEB 
 

0.085** 0.048 0.103* 0.047 0.899* 0.208 1.016* 0.179 

Intersection Size  0.007* 0.003 0.009* 0.003 0.006* 0.003 0.006* 0.003 

Signal Control 

System 

Signalized 

(vs. Stop) 
0.626* 0.252 0.615* 0.251 0.706* 0.248 0.672* 0.245 

Number of Legs 
Four (vs. 

Three) 
0.321* 0.159 0.301** 0.157 0.289** 0.155 0.260** 0.152 

Bike Lane Yes (vs. No) -0.411* 0.146 -0.401* 0.145 -0.379* 0.143 -0.338* 0.141 

Sidewalk Width  -0.070* 0.028 -0.071* 0.027 -0.074* 0.027 -0.072* 0.026 

Median Width  -0.013* 0.005 -0.012* 0.005 -0.011* 0.005 -0.009** 0.005 

Speed Limit  0.030* 0.010 0.030* 0.009 0.028* 0.009 0.029* 0.009 

Over-dispersion  0.261 0.103 0.231 0.101 0.179 0.089 0.136 0.082 

Model Fit 
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Log Likelihood -481.8657 -478.9470 -471.5531 -464.9226 

AIC 985.7314 979.8940 965.1062 951.8452 

BIC 1031.5278 1025.6904 1010.9027 997.6417 

RMSE 1.7345 1.6866 1.6501 1.6097 

MAD 1.9163 1.8974 1.8647 1.8392 

PMAD 0.9077 0.8988 0.8833 0.8712 

* Significant at 95% confidence interval; ** Significant at 90% confidence interval 
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Based on the best model (i.e., STRAVA with both population representation and field 

observation data adjustments), it is concluded that TEV, TEB, intersection size, signal control 

type, number of intersection legs, bike lanes, sidewalk width, median width, and speed limit are 

the significant factors that affect bicycle crashes at the intersections of our study area. Closer 

inspection of the table revealed that the two exposure variables (TEV and TEB) were significant 

at a 95% confidence interval and positively associated with bicycle crashes. Hence, bicycle 

crashes increased significantly at intersections with denser motorist and bicyclist traffic. The 

results of the model revealed that there is a significant positive association between intersection 

size and bicycle crashes. As the intersection size increases, the bicycle crashes increase 

significantly. Signal type control was found to significantly influence the bicycle crash count. The 

results intuitively suggest higher bicycle crashes at signalized intersections due to higher bicycle 

volume. This finding confirms the recent FDOT study, which found that signalized intersections 

have higher injury and total bicycle crashes than unsignalized intersections by 12% and 16%, 

respectively [35]. The results also showed that the number of intersection legs had a significant 

impact on the bicycle crashes. Three-legged intersections tend to have fewer bicycle crashes 

than four-legged intersections. This result may be explained by the fact that three-legged 

intersections have fewer turning conflicts [40]. Other than the number of legs, it is apparent 

from the model results that the bike lanes have a significant negative impact on bicycle crash 

incidents at intersections. This finding confirmed recent studies that bike lanes influenced the 

likelihood of bicycle crashes occurring [10, 25, 41]. The results also uncovered that bicycle crash 

frequency decreased with an increase in sidewalk width. It was also found that there is a 

significant association between median width and bicycle crashes. An increase of the median 

width decreases the likelihood of bicycle crashes at intersections. Concerning speed limit, it is 

worth mentioning that bicycle crashes occur significantly less often at intersections with lower 

speed limits. Lastly, it was found that several variables, such as median type (e.g., painted, curb), 

surface type (e.g., concrete, asphalt), road system (e.g., principal arterial, local), sidewalk barrier 

existence, shoulder type (e.g., paved, not paved), shoulder width, and pavement condition (e.g., 

fair, good), have no significant effect on bicycle crashes at intersections. In general, the SPFs 

developed by the NB models provide a better understanding of the key factors affecting bicycle 

crashes at intersections, such as motorist traffic volume, bicycle volume, road geometry, and 

bicycle infrastructure. The model results provide recommendations for agencies and researchers 

about how bicycle infrastructure design innovation can have a significant impact on bicycle 

crashes at intersections.  

Furthermore, the relation between TEB and bicycle crash risk was illustrated, as shown 

in Figure 4.1. Bicycle crash risk was calculated as the number of bicycle crashes divided 

by the TEB for each intersection. The crash risk then was ranked in ascending order. It 

is apparent from Figure 4.1a that when the bicycle volume increases, the ranking of 

crash risk decreases, which indicates lower bicycle crash risk occurrence, namely, the 

safety-in-numbers effect. This result may be explained by the fact that drivers are more 

cautious at intersections with many bicyclists (e.g., residential areas, school zones). A 

Spearman rank correlation test was conducted, and it was found that the ranking by 

bicycle crash risk had a high statistical correlation (0.78, p <0.0001) with TEB. Moreover, 

the potential for safety improvement (PSI), or the expected excess crash frequency, was 
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calculated as a measure of intersections that have higher bicycle crashes than those 

with similar features [42-44]. The formula of PSI is presented as follows [43, 44]: 

 

𝑃𝑆𝐼 = 𝑁𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 −  𝑁𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑          (4.6) 

 

𝑁𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 = 𝑊 × 𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 + (1 − 𝑊) × 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑    (4.7) 

   

𝑊 =
1

1 + ∝ × 𝑁𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
        (4.8) 

 

where 𝑁𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑, 𝑁𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑, 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 are the expected, predicted, and observed number 

of bicycle crashes; W is the empirical Bayes weight; and ∝ is the over-dispersion 

parameter of the SPF.  If the PSI is negative, the intersection is considered safe since it 

experiences fewer bicycle crashes than other intersections with similar characteristics. 

Alternatively, the intersection with a positive PSI value is considered dangerous, as it 

experiences more bicycle crashes than similar intersections [43, 44]. In this study, 31% 

of intersections are considered dangerous based on positive PSI values. Figure 4.1b 

represents the relationship between TEB and the ranking by PSI, in ascending order, for 

all studied intersections. The figure shows that there is no relation between TEB and 

PSI, which indicates that the potential improvement of crash frequency is not associated 

with bicycle volume. In addition, a Spearman rank correlation test was conducted, and it 

was found that the ranking by PSI had no statistical correlation (0.047, p=0.299) with 

TEB.  
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(a)  (b)  

Figure 4.1 - The relationship between TEB and crash risk at intersections 
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5 Conclusions and Recommendations 

Bicycles have been considered a sustainable, low-cost, and energy-efficient mode of 

transportation in many countries throughout the world. Previous literature has prompted more 

bicycle-related studies in order to improve cyclist safety and provide recommendations related 

to better bicycle infrastructure for promoting bicycle use.  

The analysis in this study was undertaken by using crash data and bicycle crowdsourced STRAVA 

data at the intersections of Orange County in Florida over the course of four years (2013-2016). 

Previous studies concluded that STRAVA bicycle volume has a significant association with field 

bicycle volume; however, it represents only a sample of the overall cyclists in the real world [23, 

45]. Hence, multiple adjustments were applied in order to overcome the disproportionate 

representation of STRAVA data. A linear regression model was developed to predict the 

adjusted TEB based on observed bicycle data. The results of the model demonstrated that traffic 

volume, bicycle volume, ratio between TEV and TEB, and intersection size are all factors that 

have a significant impact on the adjusted TEB. Different cases were defined, including STRAVA 

without adjustment, STRAVA with population representation adjustment, STRAVA with field 

adjustment, and STRAVA with both population representation and field adjustments. Comparing 

the studied cases suggests that it is necessary to apply both population representation and field 

data adjustments, as they were shown to have the best model performance (i.e., AIC, BIC, MAD, 

PMAD, and RMSE).  

Safety performance factors were developed utilizing NB models. It was found that both 

traffic volume and bicycle volume, which are exposures, have significantly positive 

effects on bicycle crashes. In line with previous studies, bicycle crash rates decreased 

with an increase in bicycle volumes, namely, the safety-in-numbers effect [12, 49, 50]. A 

set of geometric factors, including bike lanes, intersection size, signal control system, 

number of intersection legs, sidewalk width, pavement condition, median width, and 

speed limit, were found significant in the model. With better bicycle exposure used in this 

study, it is expected that more proper effects of the geometric factors could be identified. 

Significantly positive association could be found between the existence of bicycle lanes 

and reduction of bicycle crashes. Several studies have confirmed the effect of bicycle 

lanes on cyclist safety [9, 18, 41, 46-48]. Another finding was that signalized 

intersections are more likely to have higher rates of bicycle crashes than unsignalized 

intersections due to high bicycle volume. Similarly, three-legged intersections tend to 

have fewer bicycle crash frequencies than four-legged intersections.  

It is recommended that the identified geometric factors be included in simulation studies, 

as it is expected that the studies could help further explain why the identified factors 

have significant effects on the occurrence of bicycle crashes at intersections. For 

example, a simulation study could be conducted to explore drivers’ reactions and 

behaviors when they meet a bicyclist at an intersection with and without bike lanes. In 

general, the present study contributes to the growing body of research that 

crowdsourced data could be a good source of bicycle exposure for bicycle crash 

analysis at intersections. In addition, STRAVA data adjustments proved to provide better 

model performance of bicycle safety performance analysis.  

This study can help transportation agencies by identifying efficient ways to determine 

bicycle volume and by identifying critical factors for enhancing bicycle safety and 
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improving bicycle infrastructure at intersections. Transportation engineers and planners 

should focus on improving road geometry characteristics to further enhance bicycle 

safety at intersections (e.g., improving pavement condition, considering low speed limits, 

and having a sufficient sidewalk width, shoulder width, and median width). Policy-makers 

might consider the recommendations about bicycle infrastructure and road geometry for 

improving cyclist safety. Such policies could also encourage bicycle use as a safe, 

economical, energy-efficient, and sustainable mode of transportation.  

The research presented opens the door to ample future opportunities. The findings of 

this study represent a step towards improving bicycle safety using crowdsourced data. 

This contribution could be used when calculating bicycle crash modification factors at 

intersections. Future studies could also be undertaken for developing SPFs for 

pedestrians using crowdsourced data. It is also worth noting that further studies should 

be conducted to explore how this work could be replicated in different cities or across 

large regions.  
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